
TNKernel
Real-Time Kernel

 V. 2

(http://www.tnkernel.com/)

Copyright © 2004, 2006 Yuri Tiomkin

TNKernel v.2

Document Disclaimer
 The information in this document is subject to change without notice. While the information herein is
assumed to be accurate, Yuri Tiomkin (the author) assumes no responsibility for any errors or omissions.
 The author makes and you receive no warranties or conditions, express, implied, statutory or in any
communications with you. The author specifically disclaims any implied warranty of merchantability or fitness
for a particular purpose.

Copyright notice

 TNKernel real time kernel

 Copyright © 2004,2006 Yuri Tiomkin
 All rights reserved.

 Permission to use, copy, modify, and distribute this software in source and binary forms and its
documentation for any purpose and without fee is hereby granted, provided that the above copyright notice
appear in all copies and that both that copyright notice and this permission notice appear in supporting
documentation.

 THIS SOFTWARE IS PROVIDED BY THE YURI TIOMKIN AND CONTRIBUTORS ``AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL YURI TIOMKIN OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

Trademarks

Names mentioned in this manual may be trademarks of their respective companies.
Brand and product names are trademarks or registered trademarks of their respective holders.

Document Version:

 - 2.3

Acknowledgments:

 Thanks to Clemens Fischer – for reading and providing corrections

2

TNKernel v.2

INTRODUCTION
 TNKernel is a compact and very fast real-time kernel for the embedded 32/16 bits microprocessors.
TNKernel performs a preemptive priority-based scheduling and a round-robin scheduling for the tasks with
identical priority.
 The current version of TNKernel includes semaphores, mutexes, data queues, event flags and fixed-sized
memory pools. The system functions calls in the interrupts are supported.
 TNKernel is a fully portable (written mostly in ANSI C except processor-specific parts), but the current
version of TNKernel has been ported for the ARM microprocessors only.

 TNKernel has been written “under the significant influence” of the µITRON 4.0 Specifications.

 The µITRON 4.0 Specifications is an open real-time kernel specification developed by the ITRON
Committee of the TRON Association.The µITRON 4.0 Specification document can be obtained from
the ITRON Project web site (http://www.assoc.tron.org/eng/document.html).

 TNKernel is distributed in the source code form free of charge under the FreeBSD-like license.

 TASKS
 In TNKernel, a task is a branch of the code that runs concurrently with another tasks from the
programmer's point of view. At the physical level, tasks are actually executed using processor time sharing.
Each task can be considered to be an independed program, which executes in its own context (processor
registers, stack pointer, etc.).
 When the currently running task loses its claim for executing (by the issuing of a system call or interrupt), a
context switch is performed. The current context (processor registers, stack pointer, etc.) is saved and the
context of another task is restored. This mechanism in the TNKernel is called the "dispatcher".
 Generally, there are more than one executable task, and it is necessary to determine the order of the task
switching (execution) by using some rules. "Scheduler" is a mechanism that controls the order of the task
execution.
 TNKernel uses a priority-based scheduling based on a priority level assigned to the each task. The
smaller the value of the priority, the higher the priority level. TNKernel uses a 32 levels of priority.
 Priorities 0 (highest) and 31 (lowest) are reserved by the system for the internal using. The user may
create tasks with priorities 1…30.
 In TNKernel, more than one task can have the same (identical) priority.

 TASK STATES
There are four task states in TNKernel:

1. RUNNING state

The task is currently executing.

2. READY state

 The task is ready to execute, but cannot do so because a task with higher priority (sometimes same
priority) is already executing. A task may execute at any time once the processor becomes
available.
 In TNKernel, both RUNNING and READY states are marked as RUNNABLE.

3. WAIT/SUSPEND state

 When a task is in the WAIT/SUSPEND state, the task cannot execute because the conditions
necessary for its execution have not yet been met and the task is waiting for them. When a

3

TNKernel v.2

task enters the WAIT/SUSPEND state, the task's context is saved. When the task resumes
execution from the WAIT/SUSPEND state, the task's context is restored.

 WAIT/SUSPEND actually have one of three types:

 - WAITING state

 The task execution is blocked until some synchronization action occurs, such as timeout
expiration, semaphore available, event occurring, etc.

 - SUSPENDED state

The task is forced to be blocked (switched to the non-executing state) by another task or
itself.

 - WAITING_SUSPENDED state

 Both WAITING and SUSPENDED states co-exist.
 In TNKernel, if a task leaves a WAITING state, but a SUSPENDED state exists, the task is
not switched to the READY/RUNNING state. Similarly, if a task leaves SUSPENDED state,
but a WAITING state exists, the task is not switched to the READY/RUNNING state. A task
is switched to READY/RUNNING state only if there are neither WAITING nor SUSPENDED
states flagged on it.

4. DORMANT state

 The task has been initialized and it is not yet executing or it has already exited. Newly created
tasks always begin in this state.

SCHEDULING RULES
 In TNKernel, as long as the highest privilege task is running, no other task will execute unless the highest
privilege task cannot execute (for instance, for being placed in the WAITING state).
 Among tasks with different priorities, the task with the highest priority is the highest privilege task and will
execute.
 Among tasks of the same priority, the task that entered into the runnable (RUNNING or READY) state first
is the highest privilege task and will execute.

Example: Task A has priority 1, tasks B, C, D, E have priority 3, tasks F,G have priority 4, task I has priority 5.
 If all tasks are in the READY state, this is the sequence of tasks executing :

1. Task A - highest priority (priority 1)
2. Tasks B, C, D, E - in order of entering into runnable state for this priority (priority 3)
3. Tasks F, G - in order of entering into runnable state for this priority (priority 4)
4. Task I - lowest priority (priority 5)

 In TNKernel, tasks with the same priority may be scheduled in round robin fashion by getting a
predetermined time slice for each task with this priority.

INTERRUPTS
 In TNKernel, there are special functions for processing system calls inside interrupt(s).Generally, if some
conditions, checked while in interrupt, required context switching, system does it according to the
architecture of processor (some processors use different stack to service interrupts).

SYSTEM TASKS
 In TNKernel, the task with priority 0 (highest) is used for supporting the system tick timer functionality and
the task with priority 31 (lowest) is used for performing statistics.
 TNKernel automatically creates these tasks at the system start.

4

TNKernel v.2

TNKernel FUNCTIONALITY
 1.Tasks

 The user may create tasks with priorities 1…30. User tasks should newer communicate with tasks of
priorities 0 and 31 (for instance, to attempt to switch these tasks into suspend state etc.).
The system will reject any attempt to create a task with priority 0 or 31.
 More than one user tasks can have the same priority. Tasks with identical priorities have the ability for
round-robin scheduling.

Task functions (TNKernel version 2.x)

Function Description
tn_task_create Create task
tn_task_terminate Move task to DORMANT state
tn_task_exit Terminate currently running task
tn_task_delete Delete already terminated task
tn_task_activate Activate task. Task is switched from DORMANT

state to runnable state
tn_task_iactivate The same as above, but in interrupts
tn_task_change_priority Change current task priority
tn_task_suspend Suspend task. If task is runnable, it is switched

to the SUSPENDED state.
If task is in the WAITING stage, it is moved into
the WAITING_SUSPENDED state

tn_task_resume Resume suspended task - allows the task to
continue its normal processing.

tn_task_sleep Move currently running task sleep.
tn_task_wakeup Wake up the task from sleep.
tn_task_iwakeup The same as above, but in interrupts.
tn_task_release_wait Forcibly release task from waiting (including

sleep), but not from the SUSPENDED state
tn_task_irelease_wait The same as above, but in interrupts

 2. Semaphores
 A semaphore has a resource counter and a wait queue. The resource counter shows the number of
unused resources. The wait queue manages the tasks waiting for resources from this semaphore. The
resource counter is incremented by 1 when a task releases a semaphore resource, and is decremented by 1
when a task acquires a semaphore resource.
 If a semaphore has no available resources (resource counter is 0), a task that requested a resource will
wait in the semaphore wait queue until a resource is arriving (another task releases it to the semaphore).

Semaphore functions (TNKernel version 2.x)

Function Description
tn_sem_create Create semaphore
tn_sem_delete Delete semaphore
tn_sem_signal Release semaphore resource
tn_sem_isignal The same as above, but in interrupts
tn_sem_acquire Acquire one resource from semaphore
tn_sem_polling Acquire one resource from semaphore with

polling
tn_sem_ipolling The same as above, but in interrupts

5

TNKernel v.2

3. Mutexes
 A mutex is an object used for mutual exclusion of a shared resource.
Mutex supports two approaches for avoiding the unbounded priority inversions problem - the priority
inheritance protocol and the priority ceiling protocol. A discussion about strengths and weaknesses of each
protocol as well as priority inversions problem is beyond the scope of this document.
 A mutex has a similar functionality as a semaphore with maximum count = 1(a binary semaphore). The
differences are that a mutex can only be unlocked by the task that locked it and that a mutex is unlocked by
TNKernel when the locking task terminates.
 A mutex uses the priority inheritance protocol when it has been created with the
TN_MUTEX_ATTR_INHERIT attribute, and the priority ceiling protocol when its attribute value is
TN_MUTEX_ATTR_CEILING.
 The mutexes in TNKernel support full-feature priority inheritance protocols according to the document [1].
There is a difference in approach to the µITRON 4.0 Specification: µITRON 4.0 proposes a subset of the
priority ceiling protocol (a highest locker protocol), TNKernel uses a full version of priority ceiling protocol.
 The priority inheritance protocol solves the priority inversions problem but doesn't prevents deadlocks.
 The priority ceiling protocol prevents deadlocks and chained blocking but it is slower than the priority
inheritance protocol .

Mutex functions (TNKernel version 2.x)

Function Description
tn_mutex_create Create a mutex
tn_mutex_delete Delete a mutex
tn_mutex_lock Lock a mutex
tn_mutex_lock_polling Try to lock a mutex (with polling)
tn_mutex_unlock Unlock a mutex

4. Data Queues
 A data queue is a FIFO that stores pointer (of type void*) in each cell, called (in µITRON style) a data
element. A data queue also has an associated wait queue each for sending (wait_send queue) and for
receiving (wait_receive queue).
 A task that sends a data element is tried to put the data element into the FIFO. If there is no space left in the
FIFO, the task is switched to the WAITING state and placed in the data queue's wait_send queue until
space appears (another task gets a data element from the data queue).
 A task that receives a data element tries to get a data element from the FIFO. If the FIFO is empty (there is
no data in the data queue), the task is switched to the WAITING state and placed in the data queue's
wait_receive queue until data element arrive (another task puts some data element into the data queue).
 To use a data queue just for the synchronous message passing, set size of the FIFO to 0.
 The data element to be sent and received can be interpreted as a pointer or an integer and may have value
0 (NULL).

Data Queue functions (TNKernel version 2.x)

Function Description
tn_queue_create Create data queue
tn_queue_delete Delete data queue
tn_queue_send Send (put) a data element into the data queue
tn_queue_send_polling Try to send(put) a data element into the data queue(with polling)
tn_queue_isend_polling The same as above, but inside interrupts
tn_queue_receive Receive (get) a data element from the data queue
tn_queue_receive_polling Try to receive (get) a data element from the data queue (with

polling)
tn_queue_ireceive The same as above, but inside interrupts

6

TNKernel v.2

5. Eventflags

 An eventflag has an internal variable (of size integer), which is interpreted as a bit pattern where each bit
represents an event. An eventflag also has a wait queue for the tasks waiting on these events.

 A task may set specified bits when an event occurs and may clear specified bits when necessary. A task
waiting for events to occur will wait until every specified bit in the eventflag bit pattern is set. The tasks
waiting for an eventflag are placed in the eventflags wait queue.
 An eventflag is a very suitable synchronization object for cases where (for some reasons) one task has to
wait for many tasks, or vice versa, many tasks have to wait for one task.

Eventflag functions (TNKernel version 2.x)

Function Description
tn_event_create Create eventflag
tn_event_delete Delete eventflag
tn_event_wait Wait until eventflag satisfies the release condition
tn_event_wait_polling Wait until eventflag satisfies the release condition, with polling
tn_event_iwait The same as above, but inside interrupts
tn_event_set Set eventflag
tn_event_iset The same as above, but inside interrupts
tn_event_clear Clears the bits in the eventflag
tn_event_iclear The same as above, but inside interrupts

6. Fixed-Sized Memory Pools
 A fixed-sized memory pool is used for managing fixed-sized memory blocks dynamically. A fixed-sized
memory pool has a memory area where fixed-sized memory blocks are allocated and the wait queue for
acquiring a memory block.
 If there are no free memory blocks, a task trying to acquire a memory block will be placed into the wait
queue until a free memory block arrives (another task returns it to the memory pool).

Fixed-sized memory pool functions (TNKernel version 2.x)

Function Description
tn_fmem_create Create Fixed-Sized Memory Pool
tn_fmem_delete Delete Fixed-Sized Memory Pool
tn_fmem_get Acquire (get) a memory block from pool
tn_fmem_get_polling Acquire (get) a memory block from pool, with polling
tn_fmem_get_ipolling The same as above, but inside interrupts
tn_fmem_release Release (put back to pool) a memory block
tn_fmem_irelease The same as above, but inside interrupts

7

TNKernel v.2

STARTING TNKernel
 For the TNKernel, the main() function will look like:

int main()
{
 //-- Operations before TNKernel's start (for instance, hardware
 initialization)
 .
 .
 .
 tn_start_system(); //-- Never returns
 return 0; //-- Unreachable
}

 The tn_start_system() function performs all actions to initialize and start TNKernel (initializes the system
global variables, creates tasks with priorities 0 and 31, calls start-up functions etc.)
 The tn_start_system() function internally calls the tn_app_init() function.
 The contents (body) of the tn_app_init() function has to be defined by the user and may be empty. In this
function the user has to create all tasks, semaphores, data queues, memory pools etc., which he wants to
have before the system start.

TNKernel TIME TICKS
 For the purpose of calculating timeouts and delays, TNKernel uses a time tick timer. In TNKernel, this time
tick timer must to be a some kind of hardware timer that produces interrupt for time ticks processing. The
period of this timer is user determined (usually in the range 0.5...20 ms).
 Within the time ticks interrupt processing, it is only necessary to call the tn_tick_int_processing()
functions (see details below).
 To minimize interrupt processing time, TNKernel makes the most time consuming processing inside the
task with priority 0. The tn_tick_int_processing() function releases the priority 0 task from sleep (see file
tn.c).

ROUND ROBIN SCHEDULING IN TNKernel
 TNKernel has the ability to make round robin scheduling for tasks with identical priority.
 By default, round robin scheduling is turned off for all priorities. To enable round robin scheduling for tasks
on certain priority level and to set time slices for these priority, user must call the tn_sys_tslice_ticks()
function.
 The time slice value is the same for all tasks with identical priority but may be different for each priority
level.
 If the round robin scheduling is enabled, every system time tick interrupt increments the currently running
task time slice counter.
 When the time slice interval is completed, the task is placed at the tail of the ready to run queue of its
priority level (this queue contains tasks in the RUNNABLE state) and the time slice counter is cleared. Then
the task may be preempted by tasks of higher or equal priority.

 If tasks with round-robin scheduling never switch to the WAITING state (for instance when there are no
semaphore(s) acquiring, sleep,etc.), lower priority tasks will never run !

 In most cases, there is no reason to enable round robin scheduling. For applications running multiple
copies of the same code, however, (GUI windows, etc.), round robin scheduling is an acceptable solution.

8

TNKernel v.2

TNKernel PORT
 There are few files in TNKernel having processor-depended contents:

tn_port.h

 This file includes definitions and macros for the processor's memory alignment.

tn_port.c

 This file contains functions:

tn_stack_init Creates task stack frame. System invokes it at
task creation time.

get_task_by_timer_queque Calculates task TCB start address by address of
task's timer queue

get_task_by_tsk_queue Calculates task TCB start address by address of
task's wait queue

get_task_by_block_queque Calculates task TCB start address by address of
entry in the system blocked task list - uses only
for the mutexes priority seiling protocol

get_mutex_by_mutex_queque Calculates mutex TN_MUTEX start address by
the mutex entry in the task's locked mutexes list

get_mutex_by_lock_mutex_queque Calculates mutex TN_MUTEX start address by
the mutex entry in the system's locked mutexes
list

get_mutex_by_wait_queque Calculates mutex TN_MUTEX start address by
the list of the tasks that wait on a mutex

tn_arm_port.s

 For different compilers, this file has different names: tn_port_asm_armcc.s, tn_port_asm_ghs.s,
tn_port_asm_keil.s, tn_port_asm.s79, etc.

 This file contains assembly-written functions:

Function C-language prototype
tn_switch_context void tn_switch_context (void)
tn_switch_context_exit void tn_switch_context_exit(void)
tn_cpu_irq_isr void tn_cpu_irq_isr (void)
tn_cpu_save_sr int tn_cpu_save_sr (void)
tn_cpu_restore_sr void tn_cpu_restore_sr (int sr)
tn_start_exe void tn_start_exe (void)
tn_chk_irq_disabled int tn_chk_irq_disabled (void)
ffs_asm int ffs_asm (unsigned int val)
tn_cpu_fiq_isr void tn_cpu_fiq_isr (void)

 All assembly-written functions are for the system internal purposes only. There is no reason to invoke
them from the user tasks.

 The tn_switch_context() function performs system context switch outside of interrupts.

 The tn_switch_context_exit() function is used to exit from currently running task.

 The tn_cpu_irq_isr() function is invoked by a hardware to process ARM IRQ interrupt. It calls the

9

TNKernel v.2

tn_cpu_irq_handler() function to execute user code for interrupt processing. Then the system checks
context switch condition and - if necessary - performs a context switch within an interrupt.

 The tn_cpu_fiq_isr() function is invoked by hardware to process ARM FIQ interrupt similar to the function
tn_cpu_irq_isr().

 The tn_cpu_save_sr() function saves the contents of the ARM SPSR processor register in the additional
variable.

 The tn_cpu_restore_sr() function restores contents of ARM SPSR register previously saved by function
tn_cpu_save_sr().

 The tn_start_exe() function makes first context switching at the system start.

 The tn_chk_irq_disabled() function checks the ARM CPSR processor register for the current IRQ status
and returns 1 if IRQ interrupt is disabled, otherwise returns 0.

 The ffs_asm() function implements "find first set (bit)" operation (starting from LSB). It returns bit position
(1…32) if bit with value '1' is found, otherwise returns 0.

startup_hardware_init.s

 This file contains assembly-written functions:

Function C-language prototype
tn_startup_hardware_init Not used in C
tn_arm_disable_interrupts void tn_arm_disable_interrupts (void)
tn_arm_enable_interrupts void tn_arm_enable_interrupts (void)

 The tn_startup_hardware_init routine is called immediately after reset to setup hardware that is
 vital for the processor's functionality (for instance, SDRAM controller setup, PLL setup, etc.)
 It is assumed that other hardware initialization routine(s) will be invoked later by the C-language function
calls.

 The tn_arm_enable_interrupts() function enables interrupts in ARM processors. It replaces a similar
function with different names in different compilers (for instance, in IAR ARM compiler: __enable_interrupt(),
in Rowley CrossWorks: __ARMLIB_enableIRQ(), etc.)

 The tn_arm_disable_interrupts () function complements the tn_arm_enable_interrupts() function.

tn_user.c

 This file includes functions:
 - tn_cpu_irq_handler

- tn_cpu_int_enable

 The tn_cpu_irq_handler() function is the user routine to process interrupts. The user has to include
custom code for the handling interrupts. Example code contained in the distribution may be used as a guide.
 TNKernel invokes this function internally from the tn_cpu_irq_isr() function or the tn_cpu_fiq_isr()
function without user intervention (see above).

 The sample code for the ARM processor family uses polling to recognize an interrupt sources. An
alternative solution would be to read registers in the interrupt controller. A discussion about strengths and
weaknesses of these approaches is beyond the scope of this document.

10

TNKernel v.2

 For instance, the tn_cpu_irq_handler() function may be like this:

void tn_cpu_irq_handler(void)
{
 if(...) //-- Int source - time ticks timer
 {
 tn_tick_int_processing(); //-- Mandatory!
 .
 .
 .
 }
 else if(...) //-- Int source - UART
 {
 .
 .
 .
 }

 else if(...) //-- Int source - SPI
 {
 .
 .
 .
 }
 //-- etc.
}

or like this (example for the STMicroelectronics STR71X ARM):

void tn_cpu_irq_handler(void)
{
 volatile int ivr;

 ivr = rEIC_IVR; //-- For correct interrupts controller
 //-- hardware functionality only
 ivr = rEIC_CICR; //-- Get interrupt number
 if(ivr == IVECT_TIMER1)
 timer1_irq_func(); //-- The user function to handle Timer 1 int
 else if(ivr == IVECT_UART0)
 uart0_irq_func(); //-- The user function to handle UART0 1 int
 .
 .
 .
}

 It is important that the tn_tick_int_processing() function has to be invoked for the system time ticks timer
interrupt processing within the tn_cpu_irq_handler() function or within timer interrupt handling function.

 The tn_cpu_int_enable() function enables all interrupts for vectors utilized by the user project and than
enables global interrupts. The user must enable the system time ticks interrupt in this function. TNKernel
calls this function without user intervention.

 For instance, the tn_cpu_int_enable() function may be like this:

void tn_cpu_int_enable()
{
 //-- Enable UART interrupt
 .
 .
 .

11

TNKernel v.2

 //-- Enabled timer interrupt for time ticks (mandatory).
 .
 .
 .
 //-- Enable DMA interrupt
 .
 .
 .
 //-- Enable global interrupts
 .
 .
 .
}

12

TNKernel v.2

TNKernel API FUNCTIONS

System functions

tn_sys_tslice_ticks Enable/disable round robin scheduling

Function:

 int tn_sys_tslice_ticks (int priority,
 int value)

Parameter:

priority Priority for which round-robin scheduling is enabled/disabled
value Time slice value. Must be greater than 0 and less or equal to

the MAX_TIME_SLICE.
 If value is NO_TIME_SLICE, round-robin scheduling for
tasks with priority is disabled.

Return parameter:

TERR_NO_ERR Normal completion
TERR_WRONG_PARAM Input parameter(s) has a wrong value

Description:

 This function controls round-robin scheduling for the tasks with a given priority.
 A time slice value is calculated in the system ticks. The value is the same for all tasks with identical priority
but may be different for each priority level.

13

TNKernel v.2

Tasks functions

 Each task has an associated task control block (TCB), defined (in file tn.h) as:

typedef struct _TN_TCB //-- Ver. 2.x
{
 unsigned int * task_stk; //-- Pointer to the task's top of stack
 CDLL_QUEUE task_queue; //-- Queue to include task in the ready/wait lists
 CDLL_QUEUE timer_queue; //-- Queue to include task in the timer(timeout,etc.) list
 CDLL_QUEUE block_queue; //-- Queue to include task in the blocked task list only
 // used for mutexes priority seiling protocol
 CDLL_QUEUE create_queue; //-- Queue is used to include task in create list only
 CDLL_QUEUE mutex_queue; //-- List of all mutexes locked by the tack (ver 2.x)
 CDLL_QUEUE * pwait_queue; //-- Ptr to the object's (semaphor,event,etc.) wait list,
 // the task is waiting for (ver 2.x)
 struct _TN_TCB * blk_task; //-- Store task blocking our task (for the mutexes
 // priority ceiling protocol only (ver 2.x)

 int * stk_start; //-- Base address of the task's stack space
 int stk_size; //-- The task stack size (in sizeof (void*), not bytes)
 void * task_func_addr; //-- filled on creation (ver 2.x)
 void * task_func_param; //-- filled on creation (ver 2.x)

 int base_priority; //-- Task base priority (ver 2.x)
 int priority; //-- Task current priority
 int id_task; //-- ID for verification(is it a task or another object?)
 // All tasks have the same id_task magic number (ver 2.x)

 int task_state; //-- Task state
 int task_wait_reason; //-- Reason for the waiting
 int task_wait_rc; //-- Waiting return code (reason why waiting finished)
 int tick_count; //-- Remaining time until timeout
 int tslice_count; //-- Time slice counter

 int ewait_pattern; //-- Event wait pattern
 int ewait_mode; //-- Event wait mode: _AND or _OR

 void * data_elem; //-- Location to store data queue entry, if the data queue is full

 int activate_count; //-- Activation request count - for statistic
 int wakeup_count; //-- Wakeup request count - for statistic
 int suspend_count; //-- Suspension count - for statistic

// Other implementation specific fields may be added below

}TN_TCB;

14

TNKernel v.2

tn_task_create Create Task

Function:

 int tn_task_create (TN_TCB * task,
 void (*task_func) (void *param),
 int priority,
 unsigned int * task_stack_start,
 int task_stack_size,
 void * param,
 int option)

Parameters:

task Pointer to the task TCB to be created
task_func Task body function. This is the address of a function declared as:

void task_func (void * param)
priority Task priority. User tasks may have priorities 1…30 (system uses

priorities 0 and 31 for internal purposes)
task_stack_start Task's stack bottom address
task_stack_size Task's stack size – number of task stack elements (not bytes)
param task_func parameter. param will be passed to task_func on creation time
option Creation option. Option values:

0
After creation task has a DORMANT state (needs
tn_task_activate() call for activation)

TN_TASK_START_ON_CREATION
After creation task is switched to the runnable
state (READY/RUNNING)

Return parameter:

TERR_NO_ERR Normal completion
TERR_WRONG_PARAM Input parameter(s) has a wrong value

Description:

 This function creates a task. A field id_task of the structure task must be set to 0 before invoking this
function. A memory for the task TCB and a task stack must be allocated before the function call. An
allocation may be static (global variables of the TN_TCB type for the task and
unsigned int [task_stack_size] for the task stack) or dynamic, if the user application supports
malloc/alloc (TNKernel itself does not use dynamic memory allocation).
 The task_stack_size value must to be chosen big enough to fit the task_func local variables and its switch
context (processor registers, stack and instruction pointers, etc.).
 The task stack must to be created as an array of unsigned int. Actually, the size of stack array element
must be identical to the processor register size (for most 32-bits and 16-bits processors a register size
equals sizeof(int)).
 A parameter task_stack_start must point to the stack bottom. For instance, if the processor stack grows
from the high to the low memory addresses and the task stack array is defined as
unsigned int xxx_xxx[task_stack_size] (in C-language notation),
 then the task_stack_start parameter has to be &xxx_xxx[task_stack_size - 1].

15

TNKernel v.2

tn_task_activate Activate task after creation

tn_task_iactivate Activate task after creation in interrupts

Function:

 int tn_task_activate (TN_TCB * task)

 int tn_task_iactivate (TN_TCB * task)

Parameter:

task Pointer to the task TCB to be activated

Return parameter:

TERR_NO_ERR Normal completion
TERR_WRONG_PARAM Input parameter(s) has a wrong value
TERR_OVERFLOW Task is already active (not in DORMANT state)
TERR_NOEXS Object is not a task or non-existent

 Description:

 These functions activate a task specified by the task. The task is moved from the DORMANT state to the
READY state and the actions associated with task activation are performed.
 If the task is not in the DORMANT state, a TERR_OVERFLOW error code is returned.

 The tn_task_iactivate() function is a similar to the tn_task_activate() function, but has to be used in
interrupts.

16

TNKernel v.2

tn_task_terminate Terminate task

Function:

 int tn_task_terminate (TN_TCB * task)

Parameter:

task Pointer to the task TCB to be terminated

Return parameter:

TERR_NO_ERR Normal completion
TERR_WRONG_PARAM Input parameter(s) has a wrong value
TERR_WSTATE Task already terminated (i.e in DORMANT state) or attempt

to terminate currently running task
TERR_WCONTEXT Unacceptable system state for this request
TERR_NOEXS Object is not a task or non-existent

Description:

 This function terminates the task specified by the task. The task is moved to the DORMANT state.
When the task is waiting in a wait queue, the task is removed from the queue.

 If activate requests exist (activation request count is 1) the count is decremented and the task is moved to
the READY state. In this case the task starts execution from beginning (as after creation and activation), all
mutexes locked by the task are unlocked etc. The task will have the lowest precedence among all tasks with
the same priority in the READY state.

 After termination, the task may be reactivated by the tn_task_iactivate() function or the
tn_task_activate() function call.
 In this case the task starts execution from the beginning (as after creation/activation).The task will have the
lowest precedence among all tasks with the same priority in the READY state.

A task must not terminate itself by this function (use the tn_task_exit() function instead).
This function cannot be used in interrupts.

17

TNKernel v.2

tn_task_delete Delete task

Function:

 int tn_task_delete (TN_TCB * task)

Parameter:

task Pointer to the task TCB to be deleted

Return parameter:

TERR_NO_ERR Normal completion
TERR_WRONG_PARAM Input parameter(s) has a wrong value
TERR_WCONTEXT Unacceptable system's state for this request
TERR_NOEXS Object is not a task or non-existent

Description:

 This function deletes the task specified by the task. The task must to be in the DORMANT state,
otherwise TERR_WCONTEXT will be returned.
 This function resets the id_task field in the task structure to 0 and removes the task from the system tasks
list. The task can not be reactivated after this function call (the task must be recreated).
 This function cannot be invoked from interrupts.

18

TNKernel v.2

tn_task_exit Terminate currently running task

Function:

 void tn_task_exit (int attr)

Parameter:

attr Exit option. Option values:

 0
 Currently running task will be terminated.

 TN_EXIT_AND_DELETE_TASK

 Currently running task will be terminated and then deleted

Description:

 This function terminates the currently running task. The task is moved to the DORMANT state.
 If activate requests exist (activation request count is 1) the count is decremented and the task is moved to
the READY state. In this case the task starts execution from the beginning (as after creation and activation),
all mutexes locked by the task are unlocked etc. The task will have the lowest precedence among all tasks
with the same priority in the READY state.

 After exiting, the task may be reactivated by the tn_task_iactivate() function or the tn_task_activate()
function call.
 In this case task starts execution from beginning (as after creation/activation).The task will have the lowest
precedence among all tasks with the same priority in the READY state.

 If this function is invoked with TN_EXIT_AND_DELETE_TASK parameter value, the task will be deleted
after termination and cannot be reactivated (needs recreation).
 This function cannot be invoked from interrupts.

19

TNKernel v.2

tn_task_suspend Suspend task

Function:

 int tn_task_suspend (TN_TCB * task)

Parameter:

task Pointer to the task TCB to be suspended

Return parameter:

TERR_NO_ERR Normal completion
TERR_WRONG_PARAM Input parameter(s) has a wrong value
TERR_OVERFLOW Task already suspended
TERR_WSTATE Task is not active (i.e in DORMANT state)
TERR_WCONTEXT Unacceptable system state for this request
TERR_NOEXS Object is not a task or non-existent

Description:

 This function suspends the task specified by the task. If the task is runnable, it is moved to the
SUSPENDED state. If the task is in the WAITING state, it is moved to the WAITING_SUSPENDED state.
 A task can suspend itself.

20

TNKernel v.2

tn_task_resume Resume suspended task

Function:

 int tn_task_resume (TN_TCB * task)

Parameter:

task Pointer to task TCB to be resumed

Return parameter:

TERR_NO_ERR Normal completion
TERR_WRONG_PARAM Input parameter(s) has a wrong value
TERR_WSTATE Task is not in SUSPEDED or WAITING_SUSPEDED state
TERR_NOEXS Object is not a task or non-existent

 Description:

 This function releases the task specified by the task from the SUSPENDED state. If the task is in the
SUSPEDED state, it is moved to the READY state, afterwards it has the lowest precedence among tasks
with the same priority in the READY state.
 If the task is in the WAITING_SUSPEDED state, it is moved to the WAITING state.
 A task cannot resume itself.

21

TNKernel v.2

tn_task_sleep Move currently running task in the sleep

Function:

 int tn_task_sleep (unsigned int timeout)

Parameter:

timeout Timeout value must be greater than 0.
A value of TN_WAIT_INFINITE causes an infinite delay.

Return parameter:

TERR_NO_ERR Normal completion
TERR_WRONG_PARAM Input parameter(s) has a wrong value
TERR_NOEXS Object is not a task or non-existent

Description:

 This function puts the currently running task to the sleep for at most timeout system ticks. When the timeout
expires and the task was not suspended during the sleep, it is switched to runnable state. If the timeout
value is TN_WAIT_INFINITE and the task was not suspended during the sleep, the task will sleep until
another function call (like tn_task_wakeup() or similar) will make it runnable.

 Each task has a wakeup request counter. If its value for currently running task is greater then 0, the
counter is decremented by 1 and the currently running task is not switched to the sleeping mode and
continues execution.

22

TNKernel v.2

tn_task_wakeup Wake up task from sleep

tn_task_iwakeup Wake up task from sleep in interrupts

Function:

 int tn_task_wakeup (TN_TCB * task)

 int tn_task_iwakeup (TN_TCB * task)

Parameter:

task Pointer to the task TCB to be wake up

Return parameter:

TERR_NO_ERR Normal completion
TERR_WRONG_PARAM Input parameter(s) has a wrong value
TERR_OVERFLOW Wakeup request already exists
TERR_WCONTEXT Unacceptable system's state for this request
TERR_NOEXS Object is not a task or non-existent

Description:

 These functions wakes up the task specified by the task from sleep mode. The function placing the task
into the sleep mode will return to the task without errors.
 If the task is not in the sleep mode, the wakeup request for the task is queued and the wakeup request
counter is incremented by 1.

 The tn_task_iwakeup() function is a similar to the tn_task_wakeup() function, but has to be used in
interrupts.

23

TNKernel v.2

tn_task_release_wait Release task from waiting or sleep

tn_task_irelease_wait Release task from waiting or sleep in interrupts

Function:

 int tn_task_release_wait (TN_TCB * task)

 int tn_task_irelease_wait (TN_TCB * task)

Parameter:

task Pointer to the task TCB to be released from waiting or sleep

Return parameter:

TERR_NO_ERR Normal completion
TERR_WRONG_PARAM Input parameter(s) has a wrong value
TERR_WCONTEXT Unacceptable system's state for function's request executing
TERR_NOEXS Object is not a task or non-existent

Description:

 These functions forcibly release the task specified by the task from waiting. If the task is in the WAITING
state, it is moved to the READY state. If the task is in the WAITNG_SUSPENDED state, it is moved to the
SUSPENDED state.
 These functions release a task from any waiting state, including sleep mode. In last case, 0 is assigned to
the wakeup request counter.
 These functions do not cause a task in the SUSPENDED state to resume.
 A task cannot specify itself in the task parameter.

 The tn_irelease_wait() function is a similar to the tn_task_release_wait() function, but has to be used in
interrupts.

24

TNKernel v.2

Semaphore functions

Each semaphore has an associated data structure, defined (in file tn.h) as:

typedef struct _TN_SEM
{
 CDLL_QUEUE wait_queue;
 int count;
 int max_count;
 int id_sem;
}TN_SEM;

 In TN_SEM structure:

count The resource availability (the number of unused resources).
wait_queue A queue that manages the tasks waiting for the resources from the

semaphore.
max_count Max number of unused resources available to the semaphore.

 id_sem ID for verification (is it a semaphore or another object?)
All semaphores have the same id_sem magic number (ver 2.x)

25

TNKernel v.2

tn_sem_create Create Semaphore

Function:

 int tn_sem_create (TN_SEM * sem,
 int start_value,
 int max_val)

Parameters:

sem Pointer to the semaphore TN_SEM structure to be created
start_value The initial value of the resource counter after creation of the semaphore
max_val The maximum resource counter value of the semaphore

Return parameter:

TERR_NO_ERR Normal completion
TERR_WRONG_PARAM Input parameter(s) has a wrong value

Description:

 This function creates a semaphore sem. A field id_sem of thestructure sem has to be set to 0 before the
call of the function.
 A memory for the sem must be allocated before its creation. An allocation may be static (global variables
of the TN_SEM type for sem) or dynamic, if the user application supports malloc/alloc (TNKernel itself
doesn’t use dynamic memory allocation).
 In TNKernel ver. 2.x, the semaphore's wait queue is always in the "first in - first out" order.

26

TNKernel v.2

tn_sem_delete Delete Semaphore

Function:

 int tn_sem_delete (TN_SEM * sem)

Parameters:

sem Pointer to the semaphore TN_SEM structure to be deleted

Return parameter:

TERR_NO_ERR Normal completion
TERR_WRONG_PARAM Input parameter(s) has a wrong value
TERR_NOEXS Object is not a semaphore or non-existent

 This function deletes a semaphore sem. All tasks that are waiting for the semaphore will be released from
waiting with error code TERR_DLT.
 The id_sem field of the structure sem is set to 0.

27

TNKernel v.2

tn_sem_signal Release Semaphore Resource

tn_sem_isignal Release Semaphore Resource in interrupts

Function:

 int tn_sem_signal (TN_SEM * sem)

 int tn_sem_isignal (TN_SEM * sem)

Parameter:

sem Pointer to the semaphore TN_SEM structure for the resource to be
released

Return parameter:

TERR_NO_ERR Normal completion
TERR_WRONG_PARAM Input parameter(s) has a wrong value
TERR_OVERFLOW Semaphore Resource has max_val value
TERR_NOEXS Object is not a semaphore or non-existent

Description:

 These functions release one resource to the semaphore specified by the sem.
 If any tasks are waiting for the semaphore, the task at the head of the associated wait queue is released
from waiting, but the resource counter is not changed.
 If there are no tasks waiting for the semaphore and the semaphore resource counter does not exceed the
max_val of the semaphore, the semaphore resource counter is incremented by 1.

 The tn_sem_isignal() function is a similar to the tn_sem_signal() function, but has to be used in
interrupts.

28

TNKernel v.2

tn_sem_acquire Acquire Semaphore Resource

Function:

 int tn_sem_acquire (TN_SEM * sem,
 unsigned int timeout)

Parameters:

sem Pointer to the semaphore TN_SEM structure of the resource to be
acquired

timeout Timeout value must be greater than 0. If timeout is TN_WAIT_INFINITE,
the function's time-out interval never elapses.

Return parameter:

TERR_NO_ERR Normal completion
TERR_WRONG_PARAM Input parameter(s) has a wrong value
TERR_TIMEOUT Timeout expired
TERR_NOEXS Object is not a semaphore or non-existent

Description:

 This function acquires one resource from the semaphore specified by the sem.
 If the resource counter of the semaphore is greater than 0, its resource counter is decremented by 1. In this
case, the currently running task is not moved to the WAITING state.
 If the resource counter of semaphore is 0, the currently running task is placed in the tail of the associated
wait queue and moved to the WAITING state for the semaphore. In this case, the semaphore resource
counter remains at value 0.
 The value of the timeout is calculated in the system ticks.
 When the timeout expires and the task wasn't suspended during the waiting, the task is switched to the
runnable state.
 If the value of timeout equals TN_WAIT_INFINITE, the wait never expires unless the semaphore is
signalled.

29

TNKernel v.2

tn_sem_polling Acquire Semaphore Resource with polling

tn_sem_ipolling Acquire Semaphore Resource in interrupts

Function:

 int tn_sem_polling (TN_SEM * sem)

 int tn_sem_ipolling (TN_SEM * sem)

Parameter:

sem Pointer to the semaphore TN_SEM structure for the resource to be
acquired

Return parameter:

TERR_NO_ERR Normal completion
TERR_WRONG_PARAM Input parameter(s) has a wrong value
TERR_TIMEOUT Resource counter’s value is 0
TERR_NOEXS Object is not a semaphore or non-existent

Description:

 There functions use polling to acquire one resource from the semaphore specified by the sem. If the
resource counter of the semaphore is greater than 0, it is decremented by 1.
 If the resource count of the semaphore is 0, the function returns immediately with a TERR_TIMEOUT error
code.

 The tn_sem_ipolling() function is a similar to the tn_sem_polling() function, but has to be used in
interrupts.

30

TNKernel v.2

 Mutex Functions

 Each mutex has an associated data structure, defined (in file tn.h) as:

 typedef struct _TN_MUTEX
 {
 CDLL_QUEUE wait_queue;
 CDLL_QUEUE mutex_queue;
 CDLL_QUEUE lock_mutex_queue;
 int attr;

 TN_TCB * holder;
 int ceil_priority;
 int cnt;
 int id_mutex; //-- ID for verification(is it a mutex or another object?)
 // All mutexes have the same id_mutex magic number (ver 2.x)
 }TN_MUTEX;

 In TN_MUTEX structure:

wait_queue List of tasks that waits a mutex
mutex_queue To include in the task's locked mutexes list (if any)
lock_mutex_queue To include in the system's locked mutexes list
attr Mutex creation attribute - TN_MUTEX_ATTR_CEILING or

TN_MUTEX_ATTR_INHERIT
holder Current mutex owner (task that locked mutex)
ceil_priority Valid when the mutex was created with the

TN_MUTEX_ATTR_CEILING attribute
cnt Reserved
id_mutex ID for verification (is it a mutex or another object). All mutexes have

the same id_mutex magic number

31

TNKernel v.2

tn_mutex_create Create mutex

Function:

 int tn_mutex_create(TN_MUTEX * mutex,
 int attribute,
 int ceil_priority)

Parameters:

mutex Pointer to already allocated TN_MUTEX structure of the mutex to be
created

attribute Creation attribute. Has to be one of:

- TN_MUTEX_ATTR_INHERIT
 Mutex uses the priority inheritance protocol

- TN_MUTEX_ATTR_CEILING
− Mutex uses the priority ceiling protocol

ceil_priority Valid only for the TN_MUTEX_ATTR_CEILING attribute. For the
TN_MUTEX_ATTR_INHERIT attribute can have any value;

Return parameter:

TERR_NO_ERR Normal completion
TERR_WRONG_PARAM Input parameter(s) has a wrong value

Description:

 This function creates a mutex object. A field id_mutex of the structure mutex have to be set to 0 before the
call of the function. A memory for the mutex must to be allocated before this function call. An allocation may
be static (global variables with type TN_MUTEX for mutex) or dynamic, if the user application supports
malloc/alloc (TNKernel itself does not use dynamic memory allocation).

 The parameter attribute has to be TN_MUTEX_ATTR_INHERIT for the priority inheritance protocol
or TN_MUTEX_ATTR_CEILING for the priority ceiling protocol.
 The mutexes created with the TN_MUTEX_ATTR_INHERIT attribute ignore the ceil_priority parameter.

 For the TN_MUTEX_ATTR_CEILING, the ceiling priority parameter should be set to the maximum priority
of the task(s) that may lock the mutex.

32

TNKernel v.2

tn_mutex_delete Delete mutex

Function:

 int tn_mutex_delete(TN_MUTEX * mutex)

Parameters:

mutex Pointer to already existing TN_MUTEX structure of mutex to be deleted

Return parameter:

TERR_NO_ERR Normal completion
TERR_WRONG_PARAM Input parameter(s) has a wrong value
TERR_NOEXS Object is not a mutex or non-existent

Description:

 This function deletes a mutex object.
 The current priority of the task locking the mutex will be changed, if it is necessary according to the
 priority inheritance or priority ceiling protocol.

 The task that locked the mutex is not notified about the deletion of the mutex. Rather, it will receive an
error TERR_DLT when it tries to unlock the mutex.
 If there are tasks waiting to lock a mutex when it is deleted, they are released from waiting.

33

TNKernel v.2

tn_mutex_lock Lock Mutex

tn_mutex_lock_polling Try to lock mutex

Function:

 int tn_mutex_lock(TN_MUTEX * mutex,
 unsigned int timeout)

 int tn_mutex_lock_polling(TN_MUTEX * mutex)

Parameters:

mutex Pointer to the mutex TN_MUTEX structure to be locked
timeout Timeout value must be more than 0. If timeout is TN_WAIT_INFINITE,

the function's time-out interval never elapses.

Return parameter:

TERR_NO_ERR Normal completion
TERR_WRONG_PARAM Input parameter(s) has a wrong value
TERR_TIMEOUT Timeout has been expired or, for function

tn_mutex_lock_polling() only, the mutex is already locked
TERR_NOEXS Object is not a mutex or non-existent
TERR_ILUSE Illegal usage, e.g. trying to lock already locked mutex

Description:

 These functions lock the mutex. If the mutex is not locked, a running task locks the mutex and returns
without moving to the WAITING state.
 If the mutex is locked, the tn_mutex_lock() function places the currently running task into the mutex wait
queue and the task is moved to the the WAITING state for the mutex; the tn_mutex_lock_polling() function
returns TERR_TIMEOUT error if the mutex is locked.

 The value of timeout is calculated in system ticks.
 When the timeout expires and the task wasn't suspended during the waiting, the task is switched to the
runnable state.
 A timeout TN_WAIT_INFINITE doesn't expire until the mutex can be locked.

 If the running task already locked the mutex or has a base priority higher than the ceiling priority with a
TN_MUTEX_ATTR_CEILING attributed mutex, these functions return a TERR_ILUSE error.

34

TNKernel v.2

tn_mutex_unlock Unlock Mutex

Function:

 int tn_mutex_unlock(TN_MUTEX * mutex)

Parameters:

mutex Pointer to the mutex TN_MUTEX structure to be unlocked

Return parameter:

TERR_NO_ERR Normal completion
TERR_WRONG_PARAM Input parameter(s) has a wrong value
TERR_NOEXS Object is not a mutex or non-existent
TERR_ILUSE Illegal usage, eg. trying to unlock already unlocked mutex

Description:

 This function unlocks the mutex.
 If any tasks are waiting for the mutex, the task at the head of the mutex wait queue is released from
waiting and locks the mutex. The current priority of this task will be changed if it is necessary according to
the priority inheritance or the priority ceiling protocol.
 If no task is waiting to lock the mutex, it goes to the unlocked state.
 If the running task does not has the mutex locked, the functions returns a TERR_ILUSE error.
 The current priority of the task unlocking the mutex will be changed if it is necessary according to the
priority inheritance or the priority ceiling protocol.

35

TNKernel v.2

 Data Queue functions

 Each data queue has an associated data structure defined (in file tn.h) as:

 typedef struct _TN_DQUE
 {
 CDLL_QUEUE wait_send_list;
 CDLL_QUEUE wait_receive_list;

 void ** data_fifo;
 int num_entries;
 int tail_cnt;
 int header_cnt;
 int id_dque;
 }TN_DQUE;

 In TN_DQUE structure:

wait_send_list Wait queue for sending a data element
wait_receive_list Wait queue for receiving a data element
data_fifo Pointer to array of void* to store data queue data elements
num_entries Capacity of data_fifo (max number of entries)
tail_cnt Counter for processing data queue's data_fifo
header_cnt Counter for processing data queue's data_fifo
id_dque ID for verification (is it a data queue or another object?)

All data queues have the same id_dque magic number (ver 2.x)

 When the capacity of the data queue is set to zero (the num_entries is 0), a data queue can be used for
tasks synchronization.
 For instance, there are two tasks – the task A and the task B, and both tasks runs asynchronously.
 If task A invokes tn_queue_send() first, the task A is moved to the WAITING state until task B calls
tn_queue_receive().
 If task B invokes tn_queue_receive() first, the task B is moved to the WAITING state until task A calls
tn_queue_send().
 When task A calls tn_queue_send() and task B calls tn_queue_receive(), the data transfer from task A to
task B takes place and both tasks are moved to the runnable state.

36

TNKernel v.2

tn_queue_create Create data queue

Function:

 int tn_queue_create (TN_DQUE * dque,
 void ** data_fifo,
 int num_entries)

Parameters:

dque Pointer to already allocated TN_DQUE structure of data queue to be
created

data_fifo Pointer to already existing array to store data queue entries. Each array
element size equates sizeof (void*). data_fifo can be NULL.

num_entries Capacity of the data queue (max number of entries). Can be 0

Return parameter:

TERR_NO_ERR Normal completion
TERR_WRONG_PARAM Input parameter(s) has a wrong value
TERR_NOEXS Object is not a data queue or non-existent

Description:

 This function creates a data queue. The field id_dque of the structure dque must be set to 0 before the call
of the function. A memory for the dque and the data_fifo must to be allocated before the function call. An
allocation may be static (global variables of type TN_DQUE for dque and void* data_fifo [num_entries] for
data_fifo) or dynamic, if the user application supports malloc/alloc (TNKernel itself does not use dynamic
memory allocation).

 With the dynamic memory allocation, a size (in bytes) of data_fifo array has to be
sizeof(void*) x num_entries.

37

TNKernel v.2

tn_queue_delete Delete the data queue

Function:

 int tn_queue_delete (TN_DQUE * dque)

Parameters:

dque Pointer to TN_DQUE structure of data queue to be deleted

Return parameter:

TERR_NO_ERR Normal completion
TERR_WRONG_PARAM Input parameter(s) has a wrong value
TERR_NOEXS Object is not a data queue or non-existent

Description:

 This function deletes the data queue, specified by the dque.
 All tasks waiting for data queue resources will be released from the waiting with a error code TERR_DLT.
 The field id_dque of structure dque will be set to 0.

38

TNKernel v.2

tn_queue_send Send (put) the data element to the data queue

Function:

 int tn_queue_send (TN_DQUE * dque,
 void * data_ptr,
 unsigned int timeout)

Parameters:

dque Pointer to already allocated TN_DQUE structure of data queue to which
the data element is send

data_ptr Data element to be sent
timeout Timeout value must be greater than 0.

A value of TN_WAIT_INFINITE causes infinite waiting.

Return parameter:

TERR_NO_ERR Normal completion
TERR_WRONG_PARAM Input parameter(s) has a wrong value
TERR_TIMEOUT Timeout has been expired
TERR_NOEXS Object is not a data queue or non-existent

Description:

 This function sends the data element specified by the data_ptr to the data queue specified by the dque.
If there are tasks in the data queue's wait_receive list already, the function releases the task from the head
of the wait_receive list, makes this task runnable and transfers the parameter data_ptr to task's function, that
caused it to wait..
 If there are no tasks in the data queue's wait_receive list, parameter data_ptr is placed to the tail of data
FIFO. If the data FIFO is full, the currently running task is switched to the waiting state and placed to the tail
of data queue's send_receive list. If the timeout value is not a TN_WAIT_INFINITE, then after timeout
expiration, function terminates immediately with a TERR_TIMEOUT error code.

39

TNKernel v.2

tn_queue_send_polling Send (put) the data element to the data queue
with polling

tn_queue_isend_polling Send (put) the data element to the data queue
in interrupts

Function:

 int tn_queue_send_polling (TN_DQUE * dque,
 void * data_ptr)

 int tn_queue_isend_polling (TN_DQUE * dque,
 void * data_ptr)

Parameters:

dque Pointer to already allocated TN_DQUE structure of data queue to which
the data element is send

data_ptr Data element to be sent

Return parameter:

TERR_NO_ERR Normal completion
TERR_WRONG_PARAM Input parameter(s) has a wrong value
TERR_TIMEOUT There are no free entries in data queue
TERR_NOEXS Object is not a data queue or non-existent

Description:

 The tn_queue_send_polling() function uses polling to send the data element specified by data_ptr to the
data queue specified by dque.
 If there are tasks in the data queue's wait_receive list already, the function releases the task from the head
of the wait_receive list, makes this task runnable and transfers parameter data_ptr to the tasks
function that caused it to wait.
 If there is no room in the data FIFO, the function terminates immediately with a TERR_TIMEOUT error
code.

 The tn_queue_isend_polling() function is similar to the tn_queue_send_polling() function, but has to be
used in interrupts.

40

TNKernel v.2

tn_queue_receive Receive (get) the data element from the data
queue

Function:

 int tn_queue_receive (TN_DQUE * dque,
 void ** data_ptr,
 unsigned int timeout)

Parameters:

dque Pointer to already allocated TN_DQUE structure of data queue from which
the data element is received

data_ptr Address of pointer (type of void*) to receive data element from dque
timeout Timeout value must be more than 0.

A value of TN_WAIT_INFINITE causes infinite waiting.

Return parameter:

TERR_NO_ERR Normal completion
TERR_WRONG_PARAM Input parameter(s) has a wrong value
TERR_TIMEOUT Timeout has been expired
TERR_NOEXS Object is not a data queue or non-existent

Description:

 This function receives the data element from the data queue specified by the dque and places it into the
address, specified by the data_ptr..
 If the data FIFO already has entries, function removes an entry from the end of the data queue FIFO and
returns it into the data_ptr function parameter. If there are task(s) in the data queue's wait_send list, the
function removes the task from the head of wait_send list, makes this task runnable and puts the data entry,
stored in this task, to the tail of data FIFO.
 If there are no entries in the data FIFO and there are no tasks in the wait_send list, the currently running
task is switched to waiting state and placed to the tail of the data queue's wait_receive list. If the timeout
value is not TN_WAIT_INFINITE, then the function terminates immediately with TERR_TIMEOUT error code
after timeout expiration.

41

TNKernel v.2

tn_queue_receive_polling Receive (get) the data element from the data
queue with polling

tn_queue_ireceive Receive (get) the data element from the data
queue in interrupts

Function:

 int tn_queue_receive_polling (TN_DQUE * dque,
 void ** data_ptr)

 int tn_queue_ireceive (TN_DQUE * dque,
 void ** data_ptr)

Parameters:

dque Pointer to TN_DQUE structure of data queue from which the data
element is received

data_ptr Address of pointer (type of void*) to receive data element from dque

Return parameter:

TERR_NO_ERR Normal completion
TERR_WRONG_PARAM Input parameter(s) has a wrong value
TERR_TIMEOUT There are no entries in data queue (data queue is empty)
TERR_NOEXS Object is not a data queue or non-existent

Description:

 The tn_queue_receive_polling() function uses polling to receive a data element from the data queue
specified by the dque and place it into the address specified by the data_ptr..
 If the data FIFO already has entries, the function removes an entry from the end of the data queue FIFO
and returns it into a data_ptr function's parameter. If there are task(s) in the data queue's wait_send list, the
function removes the task from the head of the wait_send list, makes this task runnable and puts the data
entry stored in this task TCB in the tail of the data FIFO.
 If there are no entries in the data FIFO, the function terminates immediately with TERR_TIMEOUT error
code.

 The tn_queue_ireceive() function is similar to the tn_queue_reveive_polling() function, but has to be
used in interrupts.

42

TNKernel v.2

 Eventflags functions

 Each eventflag has an associated data structure defined (in file tn.h) as:

 typedef struct _TN_EVENT
 {
 CDLL_QUEUE wait_queue;
 int attr;
 unsigned int pattern;
 int id_event;
 }TN_EVENT;

 In TN_EVENT structure:

wait_queue Wait queue for tasks waiting for an eventflag (this waiting will
continue until every specified bit in the eventflag bit pattern is set).

attr Eventflag attributes. Attributes are assigned to eventflag at the
creation time (see the description of the tn_event_create() function).

pattern Bit pattern with the state of eventflag's events
id_event ID for verification (is it a evenflag or another object?)

 All eventflags have the same id_event magic number (ver 2.x)

43

TNKernel v.2

tn_event_create Create the eventflag

Function:

 int tn_event_create (TN_EVENT * evf,
 int attr,
 unsigned int pattern)

Parameters:

evf Pointer to already allocated TN_EVENT structure of eventflag to be created
attr Eventflag attributes:

TN_EVENT_ATTR_MULTI
Multiple tasks are allowed to be in the waiting state for the
eventflag

TN_EVENT_ATTR_SINGLE
Single task only is allowed to be in the waiting state for the
eventflag

TN_EVENT_ATTR_CLR (with TN_EVENT_ATTR_SINGLE only)
Eventflag's entire bit pattern will be cleared when a task is
released from the waiting state for the eventflag.

pattern Initial value of the eventflag bit pattern

Return parameter:

TERR_NO_ERR Normal completion
TERR_WRONG_PARAM Input parameter(s) has a wrong value

Description:

 This function creates an eventflag specified by the evf. A field id_evf of the structure evf have to be set
to 0 before the call of the function. A memory for the evf must to be allocated before the function call. An
allocation may be static (global variable with type TN_EVENT) or dynamic, if the user application supports
malloc/alloc (TNKernel itself does not use dynamic memory allocation).
 The parameter attr must be TN_EVENT_ATTR_SINGLE or TN_EVENT_ATTR_MULTI.
 If the eventflag has the TN_EVENT_ATTR_SINGLE attribute, it may also have TN_EVENT_ATTR_CLR.
 An attributes TN_EVENT_ATTR_MULTI and TN_EVENT_ATTR_CLR are incompatible.
 In TNKernel ver. 2.x, the eventflag's wait queue will be in the "first in -first out" order.

44

TNKernel v.2

tn_event_delete Delete the eventflag

Function:

 int tn_event_delete (TN_EVENT * evf)

Parameters:

evf Pointer to TN_EVENT structure of eventflag to be deleted

Return parameter:

TERR_NO_ERR Normal completion
TERR_WRONG_PARAM Input parameter(s) has a wrong value
TERR_NOEXS Object is not a event flag or non-existent

Description:

 This function deletes an eventflag specified by the evf.
 All tasks waiting for the eventflag will be released with error code TERR_DLT.
 The field id_evf of the structure evf will be set to 0.

45

TNKernel v.2

tn_event_wait Wait for eventflag

tn_event_wait_polling Wait for eventflag with polling

tn_event_iwait Wait for eventflag in interrupts

Function:

 int tn_event_wait (TN_EVENT * evf,
 unsigned int wait_pattern,
 int wait_mode,
 unsigned int * p_flags_pattern,
 unsigned int timeout)

 int tn_event_wait_polling (TN_EVENT * evf,
 unsigned int wait_pattern,
 int wait_mode,
 unsigned int * p_flags_pattern)

 int tn_event_iwait (TN_EVENT * evf,
 unsigned int wait_pattern,
 int wait_mode,
 unsigned int * p_flags_pattern)

Parameters:

evf Pointer to TN_EVENT structure of eventflag to be wait
wait_pattern Bit pattern to wait for. Cannot be 0.
wait_mode Eventflag wait mode:

TN_EVENT_WCOND_OR
Any bit getting set is enough for release condition

TN_EVENT_WCOND_AND
Release condition requires all set bits matching

p_flags_pattern Address of variable to receive pattern value after end of waiting
timeout Timeout value must be greater than 0.

A value of TN_WAIT_INFINITE causes infinite waiting.

Return parameter:

TERR_NO_ERR Normal completion
TERR_WRONG_PARAM Input parameter(s) has a wrong value
TERR_ILUSE Eventflag has been created with TN_EVENT_ATTR_SINGLE

attribute and eventflag's wait queue is not empty
TERR_TIMEOUT Timeout has expired - for tn_event_wait()

Release condition not satisfied - for tn_event_iwait() and
 tn_event_wait_polling()

TERR_NOEXS Object is not a event flag or non-existent

Description:

 The tn_event_wait() function causes currently running task to wait until the eventflag satisfies the release
condition.

 The release condition is determined by the bit pattern wait_pattern and the wait mode wait_mode
parameters.

46

TNKernel v.2

 Once the release condition is satisfied, the bit pattern causing the release is returned through
p_flags_pattern.
 If the release condition is already satisfied when the tn_event_wait() is invoked, the function returns
without causing the invoking task to wait. The eventflag bit pattern is still returned through p_flags_pattern.

 If the eventflag evf has the TN_EVENT_ATTR_CLR attribute, all the bits in the eventflag's bit pattern are
cleared.
 If the release condition is not satisfied, a currently running task is placed in the eventflag's wait queue and
switched to the WAITING state for the eventflag. If the timeout value is not TN_WAIT_INFINITE, then after
timeout expiration the function terminates immediately with TERR_TIMEOUT error code.
 If eventflag evf has the TN_EVENT_ATTR_SINGLE attribute and the eventflag's wait queue is not empty,
the function returns with a TERR_ILUSE error code. This happens even if the release condition is already
satisfied.
 A parameter wait_mode can be specified as TN_EVENT_WCOND_OR or TN_EVENT_WCOND_AND.

 If the parameter's value is TN_EVENT_WCOND_OR, any bit set is enough for the release condition.
 If the parameter's value is TN_EVENT_WCOND_AND, the release condition requires all bits matching.

 The tn_event_wait_polling() function is similar to the tn_event_wait() function, but uses polling to check
release condition. If the release condition is not satisfied, tn_event_wait_polling() terminates immediately
with a TERR_TIMEOUT error code.
 The tn_event_iwait() function is similar to the tn_event_wait_polling() function, but has to be used in
interrupts.

47

TNKernel v.2

tn_event_set Set eventflag

tn_event_iset Set eventflag in interrupts

Function:

 int tn_event_set (TN_EVENT * evf,
 unsigned int pattern)

 int tn_event_iset (TN_EVENT * evf,
 unsigned int pattern)

Parameters:

Evf Pointer to TN_EVENT structure of eventflag to be set
Pattern Bit pattern to set. Cannot be 0.

Return parameter:

TERR_NO_ERR Normal completion
TERR_WRONG_PARAM Input parameter(s) has a wrong value
TERR_NOEXS Object is not a event flag or non-existent

Description:

 These functions set the bits specified by the pattern in the eventflag specified by the evf. The set operation
is a bitwise OR.
 After the eventflag's bit pattern update action, any task(s) that satisfy their release conditions are released
from waiting.
 A multiple tasks can be released at once if the eventflag evf has the TN_EVENT_ATTR_MULTI attribute.
 Next, if the eventflag evf has a TN_EVENT_ATTR_CLR attribute, the functions clear entire bit pattern and
complete.

 The tn_event_iset() function is similar to the tn_event_set() function, but has to be used in interrupts.

48

TNKernel v.2

tn_event_clear Clear eventflag

tn_event_iclear Clear eventflag in interrupts

Function:

 int tn_event_clear (TN_EVENT * evf,
 unsigned int pattern)

 int tn_event_iclear (TN_EVENT * evf,
 unsigned int pattern)

Parameters:

Evf Pointer to TN_EVENT structure of eventflag to be cleared
pattern Bit pattern to clear. Cannot be 0xFFFFFFFF (all 1’s).

Return parameter:

TERR_NO_ERR Normal completion
TERR_WRONG_PARAM Input parameter(s) has a wrong value
TERR_NOEXS Object is not a event flag or non-existent

Description:

 This function clears the bits in the eventflag specified by the evf that correspond to 0 bit in the pattern. Bit
pattern of the eventflag evf is updated by the bitwise AND operation with the value specified in pattern.

 The tn_event_iclear() function is similar to the tn_event_clear() function, but has to be used in interrupts.

49

TNKernel v.2

 Fixed-sized memory pool functions
 Each fixed-sized memory pool has an associated data structure, defined (in file tn.h) as:

 typedef struct _TN_FMP
 {
 CDLL_QUEUE wait_queue;
 unsigned int block_size;
 int num_blocks;
 void * start_addr;
 void * free_list;
 int fblkcnt;
 int id_fmp;
 }TN_FMP;

 In TN_FMP structure:

wait_queue Wait queue for acquiring a memory block
block_size Actual memory block size (in bytes)
num_blocks Memory pool's capacity (actual max number fixed-sized memory

blocks)
start_addr Actual start address of memory pool storage area - memory,

allocated to store memory blocks
free_list Pointer to the free block list
blkcnt Number of free blocks
id_fmp ID for verification (is it a fixed-sized blocks memory pool or another

object?). All fixed-sized blocks memory pool have the same id_fmp
magic number (ver 2.x)

50

TNKernel v.2

tn_fmem_create Create the fixed-sized memory pool

Function:

 int tn_fmem_create (TN_FMP * fmp,
 void * start_addr,
 unsigned int block_size,
 int num_blocks)

Parameters:

fmp Pointer to the already allocated TN_FMP structure of fixed-sized memory
pool to be created

start_addr Start address of already allocated memory to store all memory blocks
(memory pool area). Size of memory must be at least
block_size * num_blocks (see more below).

block_size Memory block size (in bytes)
num_blocks Capacity (total number of memory blocks)

Return parameter:

TERR_NO_ERR Normal completion
TERR_WRONG_PARAM Input parameter(s) has a wrong value

Description:

 This function creates a fixed-sized memory pool. A field id_fmp of the structure fmp has to be set to 0
before the call of the function. A memory for the fixed-sized memory pool (pointed by the start_addr) and
the TN_FMP structure fmp must be allocated before the function call.

An allocation may be static (global variables) or dynamic, if the user application supports malloc/alloc
(TNKernel by itself doesn’t use dynamic memory allocation).
 For the best memory usage, the block_size value has to be aligned to the processor's memory alignment.
 For instance, for the ARM processors the block_size value has to be 4,8,12…etc. bytes.
 TNKernel has a special macro MAKE_ALIG() for this purpose.
 In case of a static allocation, start_addr has to be, for instance:
 unsigned int xxx_xxx[num_blocks * (MAKE_ALIG(block_size) / sizeof(int))];
 start_addr = &xxx_xxx[0];

51

TNKernel v.2

tn_fmem_delete Delete the fixed-sized memory pool

Function:

 int tn_fmem_delete (TN_FMP * fmp)

Parameters:

fmp Pointer to already allocated TN_FMP structure of fixed-sized memory
pool to be deleted

Return parameter:

TERR_NO_ERR Normal completion
TERR_WRONG_PARAM Input parameter(s) has a wrong value
TERR_NOEXS Object is not a fixed-sized memory pool or non-existent

Description:

 This function deletes a fixed-sized memory pool specified by the fmp.
 All tasks waiting for the fixed-sized memory pool resources will be released from the waiting with a
TERR_DLT error code.
 The id_fmp field of the structure fmp will be set to 0.

52

TNKernel v.2

tn_fmem_get Get fixed-sized memory block

tn_fmem_get_polling Get fixed-sized memory block with polling

tn_fmem_get_ipolling Get fixed-sized memory block in interrupts

Function:

 int tn_fmem_get (TN_FMP * fmp,
 void ** p_data,
 unsigned int timeout)

 int tn_fmem_get_polling (TN_FMP * fmp,
 void ** p_data)

 int tn_fmem_get_ipolling (TN_FMP * fmp,
 void ** p_data)

Parameters:

fmp Pointer to the TN_FMP structure of fixed-sized memory pool to get
memory block

p_data Address of the (void*) pointer to receive memory block's start address
timeout Timeout value must be greater than 0.

A value of TN_WAIT_INFINITE causes infinite waiting.

Return parameter:

TERR_NO_ERR Normal completion
TERR_WRONG_PARAM Input parameter(s) has a wrong value
TERR_TIMEOUT Timeout has expired - for tn_fmem_get()

There is no free memory block - for tn_fmem_get_polling()
 and tn_fmem_get_ipolling()

TERR_NOEXS Object is not a fixed-sized memory pool or non-existent

Description:

 The tn_fmem_get() function acquires a memory block from the fixed-sized memory pool.
The start address of the memory block is returned through the p_data. The content of memory block is
undefined.
 When a free memory blocks are available in the memory pool area, one of the memory blocks is selected
and takes on an acquired status.
 If there are no memory blocks available, the invoking task is placed at the tail of the fixed-sized memory
pool’s wait queue and is moved to the WAITING state for a memory block.
 If timeout value is not TN_WAIT_INFINITE, then after timeout expiration the function terminates
immediately with a TERR_TIMEOUT error code.

 The tn_fmem_get_polling() function is a similar to the tn_fmem_get() function, but uses polling to check
availability of a free memory block.
 If there is no free memory block, tn_fmem_get_polling() returns immediately with a TERR_TIMEOUT
error code.
 The tn_fmem_get_ipolling() function is a similar to the tn_fmem_get_polling() function, but has to be
used in interrupts.

53

TNKernel v.2

tn_fmem_release Release fixed-sized memory block

tn_fmem_irelease Release fixed-sized memory block in interrupts

Function:

 int tn_fmem_release (TN_FMP * fmp,
 void * p_data)

 int tn_fmem_irelease (TN_FMP * fmp,
 void * p_data)

Parameter:

fmp Pointer to the TN_FMP structure of fixed-sized memory pool to release
memory block

p_data Start address of the memory block to be released

Return parameter:

TERR_NO_ERR Normal completion
TERR_WRONG_PARAM Input parameter(s) has a wrong value
TERR_NOEXS Object is not a fixed-sized memory pool or non-existent

Description:

 These functions release the memory block starting from the address p_data to the fixed-sized memory pool
specified by the fmp.
 TNKernel does not checks the validity of the membership p_data in the fmp.

 If a fixed-sized memory pool's wait queue is not empty, the task at the head of the wait queue acquires the
released memory block and this task is released from waiting.

 The tn_fmem_irelease() function is similar to the tn_fmem_release() function, but has to be used in
interrupts.

54

TNKernel v.2

References:

[1] L. Sha, R. Rajkumar, J. Lehoczky, Priority Inheritance Protocols: An Approach
 to Real-Time Synchronization, IEEE Transactions on Computers, Vol.39, No.9, 1990

55

	TNKernel
	Real-Time Kernel
	(http://www.tnkernel.com/)
	Copyright © 2004, 2006 Yuri Tiomkin
	Document Disclaimer
	 The information in this document is subject to change without notice. While the information herein is assumed to be accurate, Yuri Tiomkin (the author) assumes no responsibility for any errors or omissions.
	 The author makes and you receive no warranties or conditions, express, implied, statutory or in any communications with you. The author specifically disclaims any implied warranty of merchantability or fitness for a particular purpose.
	Copyright notice
	 TNKernel real time kernel
	 Copyright © 2004,2006 Yuri Tiomkin
	 All rights reserved.
	 Permission to use, copy, modify, and distribute this software in source and binary forms and its documentation for any purpose and without fee is hereby granted, provided that the above copyright notice appear in all copies and that both that copyright notice and this permission notice appear in supporting documentation.
	 THIS SOFTWARE IS PROVIDED BY THE YURI TIOMKIN AND CONTRIBUTORS ``AS IS'' AND
	ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
	IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
	ARE DISCLAIMED. IN NO EVENT SHALL YURI TIOMKIN OR CONTRIBUTORS BE LIABLE
	FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
	DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
	OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
	HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
	LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
	OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
	SUCH DAMAGE.
	Trademarks
	Names mentioned in this manual may be trademarks of their respective companies.
	Brand and product names are trademarks or registered trademarks of their respective holders.
	Document Version:
	 - 2.3
	Acknowledgments:
	SCHEDULING RULES

	STARTING TNKernel
	TNKernel TIME TICKS
	ROUND ROBIN SCHEDULING IN TNKernel

	TNKernel PORT
	TNKernel API FUNCTIONS
	System functions
	Tasks functions

	param
	option
	Semaphore functions
	attr

	attr
	wait_pattern
	wait_mode
	Pattern
	pattern
	 Fixed-sized memory pool functions
	block_size
	start_addr
	blkcnt
	id_fmp

	start_addr
	num_blocks

